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Learning strategies for the maximally stable diluted binary perceptron

D. Malzahn
Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t, Postfach 4120, D-39016 Magdeburg, Germany

~Received 25 October 1999!

I show analytically that an optimally chosen continuous precursorJ in the hypercube is highly correlated to
the maximally stable diluted binary perceptron which solves the same storage problem.J allows the construc-
tion of a diluted binary perceptronD by a simple rule. Performing simulations for perceptrons of sizeN
5100 I demonstrate thatD is highly stable and can be improved in an efficient manner by partial enumeration
thereby incorporating information from the precursor components. The precursor highlights the vector com-
ponents on which partial enumeration improves the stability of the vector most efficiently. Moreover, it
discriminates for each vector componenti at least one of the three possible valuesDi5$21,0,1% as being
extremely unlikely.

PACS number~s!: 05.20.2y, 87.18.Sn
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I. INTRODUCTION

Learning algorithms are needed to train neural netwo
for the tasks they have to perform. In many cases, learn
can be formulated as an optimization problem@1,2# in which
the minimum of a cost function defines the optimal synap
weights. Several efficient minimization algorithms exist f
networks with continuous weights and cost functions with
single minimum. In contrast, for networks with discre
weights, the same cost functions, defined on the discrete
display a huge number of local minima in which standa
minimization methods will get trapped@3,4#. The only
known method to find the global minimum is enumeration
all possible weight vectors. But even for the simplest n
work, the binary perceptron, enumeration can be done
reasonable time only for a system with about 40 input un
@5,6#. For larger systems, the amount of computer time
comes inordinate and a different approach is required.

A number of learning schemes have been proposed for
maximally stable binary perceptron~MSB!. The MSB is rep-
resented by a binary vectorB with N components. It stores
set of input-output mappings$jn→sn%, n51, . . . ,aN, in a
robust manner:snLn>k where k becomes maximal and
Ln5Bjn/AN denotes the so-called local fields. Among t
numerical methods that try to locate the global minimum
an appropriate cost function, the most successful so far
the genetic algorithm of Ko¨hler and simulated annealing o
Horner @3#. Their performance is quite good for perceptro
with up to 65 weights but rapidly deteriorates when the nu
ber of weights exceeds 100. An alternative and very attr
tive approach tries to draw some advantage from the fact
efficient algorithms exist for the learning problem of the co
tinuous perceptron@7–9#. By continuous optimization one
selects a unique perceptron vectorJ that solves the sam
storage problem as the MSB and is highly correlated to
The continuous precursorJ is used to predict an importan
fraction of binary components whereas all uncertain com
nents ofB must be enumerated. The approach tries to g
erate the optimal binary vector or a good approximation
it while simultaneously reducing the set of enumerated co
ponents.

As a general finding, strong precursor weights pred
PRE 611063-651X/2000/61~6!/6261~9!/$15.00
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with a high probability the correct sign for the correspondi
binary component. However, precursor weights of small
solute value give unreliable predictions. A principal diffi
culty is that in contrast to the continuous precursor, the M
can not differentiate between weak and strong compon
but must match to any precursor component a strong~binary!
weight.

In this paper, I will consider the learning problem for th
maximally stable diluted binary perceptron~MSDB! in
which weights can take on the three values21, 0, or 1. The
focus of the paper is to study the performance of continu
precursors for the prediction of MSDB weights. On fir
sight one can expect that the correlation to its respec
optimal continuous precursor is much stronger for t
MSDB than for the MSB. In particular, the addition of th
zero weight offers a natural match to weak precursor co
ponents. Simultaneously, exact determination of the m
stable vector is a much harder problem for the MSDB th
for the MSB. The search space of combinatorially possi
vectors is 3N rather than 2N with the consequence that fu
enumeration of all components becomes even more t
consuming. It has been carried out so far only for percept
sizesN<16 @10#. The increased complexity of the proble
underlines the value of a continuous precursor. Finally
should be noted, that the addition of the zero weight wh
merely eliminates some of the connections, brings abou
substantial increase in storage capacity@11#.

The present paper consists of two parts. The first is a
lytic theory. I calculate the conditional probabilityp(DuJ). It
is the key quantity for judging the predictive power of an
precursorJ with respect to the coupling vectorD of the
MSDB. I will consider the pattern entries to be statistica
independent random numbers. Hence,p(DuJ) reduces to
p(DuJ) which compares corresponding vector componentD
andJ. p(DuJ) allows me to set up rules for the constructio
of a diluted binary vector of high stability. It also provide
suggestions for different partial enumeration schemes. F
the set of saddle point equations that determine the o
parameters one obtains the cosine of the angle betweenJ and
D. I use this order parameter to evaluate different precurs
J with respect to their similarity in direction toD and show
that a nearly optimal precursor can be obtained by con
minimization in the hypercube@9#. In a second purely nu-
6261 ©2000 The American Physical Society
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6262 PRE 61D. MALZAHN
merical part of the paper, I test the quality of different lea
ing strategies for the MSDB by simulations for perceptro
of sizeN5100. The quality measure for the different lear
ing strategies is the average stability of the generated dilu
binary vectors or, equivalently, the obtained storage cap
ity. In the final Section I summarize my results.

II. THEORY: CORRELATIONS BETWEEN A
CONTINUOUS PRECURSOR AND THE MAXIMALLY

STABLE DILUTED BINARY PERCEPTRON

I consider the combined system of a diluted binary p
ceptronD5(D1 ,D2 , . . . ,DN) and a continuous perceptro
J5(J1 ,J2 , . . . ,JN) which are both trained by their indi
vidual learning rules to store the same set of patte
$jn,sn%, n51, . . . ,aN. The components of the pattern ve
tors jn are random Gaussian numbers with zero mean
unit variance. Without loss of generality one can setsn5
11. Following the general approach of Wong, Rau, a
Sherrington@12# I consider the joint probability distribution

p~D,J!5 lim
k→max

K K 1

ZE dm~J!)
n51

aN

h~ln!

3(
D

)
n51

aN

Q~Ln2k!dD1 ,Dd~J12J!L L . ~1!

Note, that all pairs of corresponding vector compone
(Dl ,Jl), l 51, . . . ,N, have the same joint probability distr
bution Eq.~1!. The averagê^•••&& is taken over the pattern
set$jn% andZ is the partition function

Z5E dm~J!)
n51

aN

h~ln!(
D

)
n

aN

Q~Ln2k! ~2!

in the joint weight space. I introduce the local fieldsln,Ln

of J andD

ln5
Jjn

AN
, Ln5

Djn

AN
. ~3!

Given any random but fixed pattern set, Eq.~1! specifies
exactly two perceptronsD andJ by learning rules.D is the
diluted binary vector

Di521,0,1 ~4!

of maximal stabilitykdb,

Ln>kdb. ~5!

The restriction~4! is enforced in Eq.~1! by the summation
(D . For the continuous perceptron I consider learning ru
which have the measurep(Juj1, . . . ,jaN)5)nh(ln) and re-
sult in a single solution. The constraint onJ is reflected in
Eq. ~1! by the integration measuredm(J). The remainder of
this section introduces the order parameters and summa
the central results of the replica calculation. Full specifi
tions of the precursorJ as well as the result for the cond
tional probability for a nearly optimal precursor are giv
below in two subsections.
-
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The pattern average in Eq.~1! can be performed using th
replica trick Z 215 limn→0Z n21 provided the local fields
ln, Ln serve as independent integration variables. The n
ral order parameters are

Qab5
DaDb

N
, qab5

JaJb

N
, r ab5

DaJb

N
, ~6!

wherea,b51, . . . ,n are replica indices andD and J from
Eq. ~1! are denoted byD1 andJ1, respectively. Introducing
Qab , qab ,r ab as independent integration variables and us
the Fourier representation of thed function gives rise to their
conjugate variablesQ̂ab ,q̂ab , r̂ ab . The order parameters ca
be written in compact form as elements of then3n matrices
Q,q,r andQ̂,q̂, r̂ ~see Appendix A for details!. This yields

p~D,J!5 lim
n→0

k→max

E 1

2n)a<b

dqab dq̂ab

2p/N

3E 1

2n)a<b

dQabdQ̂ab

2p/N E )
a,b

drabdr̂ab

2p/N

3expS NF1

2
~qq̂1QQ̂!2rr̂ 1a ln G1~q,Q,r !

1 ln G2~ q̂,Q̂, r̂ !G D p~D,Juq̂,Q̂, r̂ !. ~7!

Equation~7! integrates over all order parameters. The fac
exp(N@•••#) gives the order parameter density. In the lim
N→` it becomes sharply peaked and is dominated by
saddle point values of the order parameters.G1 andG2 are
given by Eqs.~A1!,~A2!. The density

p~D,Juq̂,Q̂, r̂ !

5
1

G2~ q̂,Q̂, r̂ !
3E )

a51

n

dm~J1
a!(

D1
a

dD
1
1 ,Dd~J1

12J!

3expS 2
1

2
~JW1q̂JW11DW 1Q̂DW 1!1JW1r̂DW 1D , ~8!

is the densityp(D,J) provided one inserts the correct sadd
point values forq̂,Q̂, r̂ . The notationJW15(J1

1 , . . . ,J1
n) and

DW 15(D1
1 , . . . ,D1

n) subsumes alln replicas of the first com-
ponent ofJ andD. I assume a replica symmetric saddle po

Qab;H Q0 a5b

Q aÞb,
qab;H q0 a5b

q aÞb,
r ab;r . ~9!

Note, thatQ0<1 due to the dilution ofD. I will consider
constraints onJ that imposeq0<1 and focus on learning
rules, which yield a unique solution,q→q0. For Q̂ab ,
q̂ab , r̂ ab holds the analog to Eq.~9!. All saddle point equa-
tions that determine the order parameters are given
Appendix A.

Before I proceed some words on the characterization
the MSDB are in order. Iwanskiet al. @10# and Krauth and
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Mézard @13# showed that the correct solution can be eith
obtained by a one step replica symmetry broken ansatz
alternatively, by the replica symmetric saddle point eq
tions supplemented with the additional constraint of a v
ishing replica symmetric entropy. The zero entropy condit
determines the maximum stabilitykdb(a). Solving the
saddle point equations for the MSDB reveals a peculiar
For all valuesa.0 one findsQ,Q0. This indicates that
many different weight vectors satisfy the conditions~5! even
at maximum stability. Since it is impossible to distingui
the individual weight vectors, all theoretical results relate
the averagêD& over this ensemble of maximally stable d
luted binary vectors.

Remarkably, the saddle point equations~A12! and ~A13!
contain the quantities

g5
r

AQq
, ĝ5

r̂

AQ̂q̂
~10!

andugu,uĝu<1. g can be interpreted geometrically: Correc
ing the overlapr for the reduced lengths of^D& andJ yields
the cosine of the angle between both vectors. The order
rameter ĝ is crucial for the distribution function Eq.~8!:
Within replica symmetry, the integrand of Eq.~8! factorizes
into two contributions. They depend solely on the sad
point values of the order parameters ofJ andD, respectively.
However, both contributions are coupled byĝ.

A. A nearly optimal continuous precursor

In this subsection, I will quantify the impact of the con
straint and of the learning rule on the quality of the prec
sor. To the MSDB only a limited set of directions are ava
able. As Boutenet al. @9# pointed out, it is advantageous t
incorporate this information in the constraint onJ while si-
multaneously the convexity of the defined vector space s
be preserved. The latter is important to ensure that the c
sidered learning rules yield a unique solution. I consider
usual spherical constraintJ25N, which is isotropic, in con-
trast to a hypercube constraint

21<Ji<1 ~11!

which favors binary directions. Figure 1 characterizes fo
perceptrons which obey the condition of maximal stabil
under different constraints: the MSB with pure bina
weights ~thin curve!, the MSDB with binary weights and
dilution ~bold curve!, the MSC with continuous weights in
the hypercube~dot-dashed curve!, the MSN with continuous
weights on the hypersphere~dashed curve!. The comparison
between MSB and MSDB is given to demonstrate briefly
impact of the dilution. Figure 1 shows the stabilityk
5minn(Vjn/AN) as a function of the pattern loada where
the coupling vector of the respective perceptron is rep
sented by the symbolic vectorV. k passes through zer
when the storage capacity is reached that isac52 for the
continuous perceptrons MSN and MSC,ac

db51.17 for the
MSDB andac

b50.83 for the MSB. The stabilityk is nor-
malized by the respective reduced length of the coup
vector, for example for the MSDB one haskn5kdb/AQ0.
r
r,
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Due to this normalization, a difference inkn characterizes a
difference in direction and one can conclude that the M
and the MSDB are much closer related than the MSDB a
the MSN.

Figure 2 showsg, the cosine of the angle betweenJ and
^D&, for different continuous precursorsJ as a function of
the pattern loada ~bold curves!. The value ofg is obtained
from the saddle point equations~A12!,~A13!. g→1 indicates

FIG. 1. Maximal stabilityk as a function of the pattern loada
for four perceptrons with different constraints. From left to righ
MSB: binary weights (kn5k), MSDB: binary weights and dilution
(kn5k/AQ0), MSC: continuous weights in the hypercube (kn

5k/Aq0), MSN: continuous weights on the hypersphere (kn5k).
k was normalized by the reduced perceptron length.

FIG. 2. Similarity in directiong5cos(̂D&,J) as a function of
the pattern loada. Different precursorsJ compared to the MSDB
~bold lines! and to the MSB~thin lines!. Different constraint forJ:
hypercube~C! versus hypersphere (S). Different learning rule forJ:
learning with potential Eq.~12! ~solid lines! versus maximum sta-
bility condition ~dashed lines!.
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6264 PRE 61D. MALZAHN
that the precursor becomes optimal and the directionsJ
and ^D& coincide. The presented precursorsJ differ with
respect to the applied constraint (C5cubic, S5spheric) and
the learning rule. The learning rule was either to maxim
the stability~MSC and MSN! or to minimize a cost function
E(J)5(nV(ln) defined by the convex potential

V~ln!5H 1/~ln2kdb! if ln.kdb

` otherwise.
~12!

The potential~12! is constructed in analogy to Ref.@8#.
As expected, Fig. 2 demonstrates a strong dependenc

the quality of the precursor on the applied constraint. T
hypercube restricted MSC is superior to the hypersphere
stricted MSN. The explanation is simple. In the hypercu
vector J may differ in length and a loss in quality of th
direction ofJ can be compensated by a gain in length ofJ by
shifting it slightly towards the nearest cube edge. Thus,
hypercube favors those orientations that constitute the bin
subspace. A somewhat smaller but nevertheless still con
erable improvement is brought about by the usage of le
ing rule Eq.~12! ~solid lines! in comparison to maximal sta
bility learning ~dashed lines!. The MSC realizes a highe
stability than the MSDB and is located in the Gardner v
ume @14# of continuous, hypercube restricted vectorsJ with
stability k>kdb werekdb denotes the theoretical stability o
the MSDB. The sole information available about the posit
of the MSDB is that it lies for all pattern loadsa at the
boundary of this Gardner volume. Given this informatio
the optimal precursor to the MSDB would be the center
mass of the Gardner volume@16#. The potential Eq.~12! is
characterized by a strong repulsion away from the bound
of the Gardner volume with stabilityk>kdb and pushes the
minimizing vector of the cost functionE(J)5(nV(ln) to-
ward its center of mass@15#. Within the class of precursor
obtainable by minimization of a cost function of the typ
E(J)5(nV(ln) the simple potential Eq.~12! provides a
quasioptimal solution and gives, as Fig. 2 shows, a ne
optimal precursor to the MSDB.

So far I discussed only the bold curves in Fig. 2. Th
compare different precursorsJ to the MSDB. To relate my
results to previous work@8,9#, thin curves show the perfor
mance of the four precursors on the MSB. Note that learn
rule Eq.~12! operates in this case with the stabilitykb of the
MSB as an input parameter. Bold and thin curves end at
storage capacity of the MSDB and the MSB, respective
According to Fig. 2, hypercube precursors approximate
MSDB better than the MSB in a wide range ofa values.
However, the difference in quality becomes rather small
the nearly optimal precursor. Figure 2 shows that for
nearly optimal hypercube precursorg is almost independen
of a.

B. The conditional probability p„DzJ…
for hypercube precursors

In the previous subsection I have shown that a continu
precursor in the hypercube which minimizes a cost funct
E(J)5(nV(ln) with the convex potential Eq.~12! on aver-
age almost coincides in direction with the coupling vector
the MSDB. It is very instructive to compare the distributio
e
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of componentsp(D) andp(J) of the MSDB and the nearly
optimal hypercube precursor.D is a diluted binary vector,
hence

p~D !5~12Q0!d~D !1
Q0

2
@d~D11!1d~D21!#.

~13!

In the limit a→0 one findsQ051 and the MSDB become
a purely binary vector. At the storage capacityac

db51.17
one hasQ050.63 and about 37% of the MSDB weights a
diluted.J has ana dependent fraction of binary componen
due to the cubic constraint@9#

p~J!5
e2J2/2s2

sA2p
Q~12uJu!1HS 1

sD @d~J21!1d~J11!#,

~14!

whereH(u)5*u
`dzexp(2z2/2)/A2p. The order parameters

starts ata50 with s5` and drops tos50 ata52. Conse-
quently, the distribution ofJ components changes gradual
from all being binary to Gaussian. At the storage capacity
the MSDBac51.17 I finds;1.04 and about 33.4% of com
ponents ofJ take on the value61. A short summary is given
by Table I. It lists the percentage of binary components foD
andJ at different pattern loadsa.

For hypercube precursors, calculation ofp(D,J) yields an
expression which factorizes out the separate terms of
distribution p(J) of the hypercube weights Eq.~14!. This
makes it simple to read off the conditional probabiliti
p(DuJ):

p~DuJ!5E
2`

`

Du fS uA12ĝ21ĝ
J

s
,D D for 21,J,1,

~15!

p~DuJ!5E
2`

`

Du
f ~u,D !

H~1/s!
HS 1/s2ĝuJ

A12ĝ2
D for J561

~16!

with Du5exp(2u2/2)du/A2p and f (u,D) as a shorthand
notation for

TABLE I. Theory: Percentage of binary components in t
nearly optimal hypercube precursorJ and the maximally stable di-
luted binary perceptronD for different pattern loadsa and infinite
perceptron sizeN.

a J D

0 100% 100%
0.20 81.7% 88.1%
0.30 74.5% 84.6%
0.50 62.4% 78.7%
0.80 48.0% 71.3%
1.16 34.0% 63.4%
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f ~u,D !5

expF2
1

2
~Q̂01Q̂!D21uDAQ̂G

112 expF2
1

2
~Q̂01Q̂!Gcosh~uAQ̂!

. ~17!

These conditional probabilities are a direct measure for ga
ing the ability of the precursor components to predict t
weights of the MSDB correctly. Figure 3 showsp(DuJ) for
the nearly optimal hypercube precursor as a function ofJ for
different values ofa. The symmetryp(DuJ)5p(2Du2J)
allows me to restrict the displayed range ofJ to the positive
interval @0,1#. To a particular valueJ.0 corresponds the
value D521 with probability p(21uJ) ~dot dashed!, the
valueD50 with probability p(0uJ) ~dashed! and the value
D51 with probability p(1uJ) ~solid!. A binary J51 corre-
sponds either toD51 ~circle! or to a diluted componentD
50 ~diamond!. The probabilityp(21u1) is very close to
zero and therefore not shown in the figures.

Figure 3 shows that binary precursor components
highly reliable. They give a correct prediction in about 94
of all cases. The prediction certainty of binary precurs
components varies only slightly in the displayed range oa
values whereas the percentage of binary componentsJ
depends strongly on alpha~ see Table I!. For very small
values ofa, precursor components of magnitudeuJi u,1 are
rare and almost equally distributed. Consequently, as Fig
shows, it is hard to decide which of them must be dilute

FIG. 3. The conditional probabilityp(DuJ) compares the nearly
optimal hypercube precursorJ to the coupling vectorD of the
MSDB by the value of corresponding components. Shown
p(D51uJ) ~solid line and circle!, p(D50uJ) ~dashed line and dia-
mond!, andp(D521uJ) ~dot-dashed line! at four different pattern
loadsa.
g-
e

re

r

3
.

The error in sign prediction of binaryD components is smal
but not negligible. The overall probability for precursor com
ponents that are different from61 increases with increasin
pattern loada. Their distribution function evolves into a pro
nounced Gaussian shape. This behavior ofp(J) is reflected
in p(DuJ). Errors in sign prediction for binaryD components
are unlikely fora.0.6. The distinction between weak~to be
diluted! and strong~to be binary! components improves.

III. SIMULATION: NUMERICAL TEST OF DIFFERENT
LEARNING RULES

Several interesting features can be noted from Fig. 3
are useful for setting up a learning strategy for the MSD
When uJu exceeds a particular valueJc(a), the most prob-
able value forD is sgn(J) while for smaller values ofJ, the
most probable value is zero. This result suggests the foll
ing very simple learning rule:

Di50 if uJi u<Jc ,

~18!

Di5sgn~Ji ! if uJi u.Jc .

The crossing pointJc of the curvesD50 and D51 lies
close toJ50.5 for all values ofa. I have carried out simu-
lations for perceptrons of sizeN5100 using the simple
learning rule Eq.~18! on the nearly optimal hypercube pre
cursor and approximatingJc by 0.5 for all values ofa. Re-
sults for the stabilityk(a) of the generated diluted binar
vectors are shown in Fig. 4 as a function of the pattern lo
a ~squares!. The solid curve displays the analytical resu
for the averaged MSDB of infinite size. All simulation da
represent averages over at least 100 samples and the
bars are smaller than the diameter of the small circles in F
4. The learned input patterns were drawn at random from
Gaussian distribution with zero mean and unit variance.

To improve on the simple learning rule Eq.~18!, I per-
formed enumerations on a subset ofNe components of the
clipped vectorD while keeping its remaining (N2Ne) com-
ponents fixed. To lower the numerical effort, partial en
meration was done using a branch and bound algorithm.
tails on the bound conditions can be found in Appendix
Theory predicts a high reliability of binary precursor comp
nents. Consequently, I accepted them always as ‘‘corre
predictions and excluded the corresponding component
the clipped vector from partial enumeration. The low
bound for the number of fixed componentsN2Ne is hence
given by the actual numberNb of binary precursor compo
nents. An estimate can be read of Table I which listsNb /N
for differenta and the limitN→`. For each particular enu
meration scheme, I will keep the numberNe of enumerated
components constant over the whole range ofa values as
long as I find enough precursor componentsJi with uJi u,1.
Partial enumeration will be performed on allNe vector com-
ponentsi where uJi u is closest to a particular valueJ0. The
number of non-binary precursor components decreases
decreasinga but neverthelessNe shall be kept constant
Consequently, the values of precursor componentsuJi u which
correspond to enumerated vector componentsDi will vary

e



om

os
c-

o
to
ra

t

rs

n
e
-
id
ce

ta
he
o

in

d
two

ic-

nt.
of
ents

ce
n

ents

on

n-

the
-

of

by
ion
nd
ng

o

keep
ta-
ffi-
ost
nu-
ec-

nts

g

6266 PRE 61D. MALZAHN
for smalla over a broader range of values than for largera.
This should be advantageous given the shape ofp(DuJ).

Partial enumeration considers for each vacant vector c
ponentDi all three possibilitiesDi5$21,0,1%. However, ac-
cording to Fig. 3, two of these three possibilities are alm
equally likely. The third possibility, an error in sign predi
tion, is expected to be rare.

The small symbols in Fig. 4 show the average stability
an improved variant of the clipped vector. The clipped vec
is improved with respect to its stability by partial enume
tion on a subset of ten components thereby considering
valuesDi5$21,0,1%. The subset of vector componentsDi
selected for enumeration did correspond either to precu
values uJi u;0 ~small diamond! or to precursor valuesuJi u
;0.5 ~small circle!. In a next step I neglected errors in sig
prediction and considered only the two most likely valu
Di5$0,sgn(Ji)% while performing partial enumerations. Enu
meration on the same subsets as above implies a cons
able reduction of the size of the enumeration space sin
am left with 210 possibilities instead of 310. Naturally, the
resulting stabilities would be lower and the reduction in s
bility gives an indication of the practical relevance of t
influence of errors in sign prediction. Partial enumeration
the subset of 10 components corresponding touJi u;0 ~small
diamonds! yields the following results: The average gain
stability to the clipped vector~squares! amounts fora50.2

FIG. 4. Effect of different learning rules on the stabilityk of
diluted binary perceptrons of sizeN5100 for different pattern loads
a. The stability k of the clipped vectorDclip is represented by
squares. All other symbols refer to situations whereDclip got im-
proved by partial enumeration~a! Di5$0,sgn(Ji)% for 16 compo-
nents corresponding touJi u;0 ~large diamond! or to uJi u;0.5
~large circle!, ~b! Di5$21,0,1% for 10 components correspondin
to uJi u;0 ~small diamond!, or to uJi u;0.5 ~small circle!. The size
of the respective enumeration space was almost equal.
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to Dk(0.2);0.097 while fora51.16 it takes on the value
Dk(1.16);0.141. The stability loss which would be induce
by enumeration on the same subset of components with
valuesDi5$0,sgn(Ji)% only would shift the small diamond
down by Dk(0.2);0.006 or byDk(1.16);0.034, respec-
tively. I conclude that the influence of errors in sign pred
tion in the vicinity uJi u;0 is small in proportion to wrong
decisions regarding the dilution of a vector compone
However, it is not negligible. In contrast, for the subset
ten components that correspond to precursor compon
with uJi u;0.5 ~small circle! errors in sign prediction have
negligible influence on the resulting stability. The differen
in stability Dk(a) to the clipped vector ranges betwee
Dk(0.2);0.103 andDk(1.16);0.204. Neglecting errors in
sign and enumerating the same subset of ten compon
would shift the small circle down byDk(0.2);0.001 or
Dk(1.16);0.002, respectively.

Alternatively, preserving the size of the enumerati
space while taking into account only two valuesDi

5$0,sgn(Ji)% allows to consider roughly 16 components i
stead of just 10 since 310;215.8. The result is indicated in
Fig. 4 by large symbols~diamond and circle!. The subset of
16 enumerated vector componentsDi did correspond either
to precursor valuesuJi u;0 ~large diamond! or to precursor
values uJi u;0.5 ~large circle!. Note, that for a vector size
N>100 and pattern loadsa>0.5 I find two completely dis-
junct subsets of about 16 components withuJi u;0.5 or uJi u
;0, respectively. By performing partial enumerations on
respective subsets ofD, I improve the clipped vector in com
pletely different subspaces and can monitor the efficiency
partial enumeration on the magnitude ofJi .

The two types of diamonds and circles were obtained
the same numerical enumeration effort. The simulat
clearly shows that partial enumeration is highly effective a
superior to any other strategy in the vicinity of the crossi
point uJcu;0.5 of the theoretical curvesp(0uJ) and
p@sgn(J)uJ# while simultaneously considering only the tw
most likely valuesDi5$0,sgn(Ji)%.

The size of the enumerated subspace was chosen to
the enumeration effort on a moderate level while it simul
neously allowed to obtain an informative picture on the e
ciency of the different strategies. Table II shows for the m
successful enumeration strategy the influence of the e
meration effort on the storage capacity of the obtained v
tors. Partial enumerationDi5$0,sgn(Ji)% was performed for
16 and 30 % of the clipped vector on vector compone
being related touJi u;0.5. This is visualized in Fig. 5.

TABLE II. Simulation: Storage capacityac of different diluted
binary perceptrons of sizeN5100. The clipped vector got im-
proved by partial enumerationDi5$0,sgn(Ji)% on a subset of vec-
tor components whereuJi u;0.5.

Percentage of Storage capacity Symbol
partial enumeration ac

0% 0.76 Square ~Fig. 4!
16% 1.02 Large circle ~Figs. 4,5!
30% 1.09 Triangle ~Fig. 5!
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IV. SUMMARY

I showed analytically as well as by simulations that t
coupling vectorD of the MSDB is highly correlated to a
continuous precursorJ which is obtained by convex minimi
zation with hypercube constraint. The predictive power oJ
can be appreciated from the conditional probabilityp(DuJ).
It suggests a very simple learning rule for a diluted bina
perceptron of high stability: All components ofJ that have
magnitude greater than 0.5 are clipped whereas all we
components ofJ get diluted. The nearly optimal hypercub
precursorJ has a considerable fraction of binary compone
which give a correct prediction forD with a probability of
about 94%. Precursor components of magnitudeuJi u,1 give
a highly reliable prediction of the sign whereas the decis
to dilute the correspondingD component is less obvious. T
test the efficiency of different learning rules with respect
the resulting stabilities I performed simulations for perce
trons of sizeN5100. The simple clipped vector

Di50 if uJi u<0.5,

~19!

Di5sgn~Ji ! otherwise,

was found to be highly stable realizing on average a stor
capacityac;0.76. Using a branch and bound algorithm
improved the clipped vector by partial enumeration on
least reliable components while keeping its remaining co
ponents fixed. The best results were obtained by partial e
meration withDi5$0,sgn(Ji)% on a subset of componen
corresponding to precursor componentsuJi u close to 0.5. Fol-
lowing this strategy and enumerating 30% of the vector
sults in a storage capacity ofac;1.09. The obtained stability
k(a) gives a close approximation to its theoretical upp
limit over the whole range ofa<1.17.

FIG. 5. Stabilityk as a function of the pattern loada ~percep-
tron sizeN5100). The clipped vector got improved by partial en
merationDi5$0,sgn(Ji)% on a subset of vector components that a
related to precursor valuesuJi u;0.5. Percentage of enumerated ve
tor components: 16%~circle!, 30% ~triangle!. The circles are iden-
tical to Fig. 4.
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APPENDIX A: SADDLE POINT EQUATIONS

The central result of the replica calculation is Eq.~7!. The
distribution of the order parameters is regulated by the te

G1~q,Q,r !5E dlW dxW

~2p!nE dLW dXW

~2p!n

3expS ixWlW 1 iXW LW 2
1

2
~xWqxW1XW QXW !2xW rXW D

3 )
a51

n

h~la!Q~La2k!, ~A1!

G2~ q̂,Q̂, r̂ !5E )
a51

n

dm~J1
a!(

D1
a

expS 2
1

2
~JW1q̂JW11DW 1Q̂DW 1!

1JW1r̂DW 1D . ~A2!

Vector notations run over the replica index, for examplelW

and LW contain the replicas of the local field of an arbitra
pattern. I write the order parameters Eq.~6! as elements of
the matricesQ,q,r , their conjugate variables define the m
tricesQ̂,q̂, and r̂

Q̂5 iS Q̂11 2Q̂ab

�

2Q̂ab Q̂nn

D ,

q̂5 iS q̂11 2q̂ab

�

2q̂ab q̂nn

D , ~A3!

r̂5 i ~ r̂ ab!.

Assuming replica symmetry, the order parameter den
takes on the form

exp~N@•••# !5exp~N@nsdb~Q,Q̂!1nsc~q,q̂!1O~n2!# !.
~A4!

sdb(Q,Q̂) denotes the entropy of the diluted binary perce
tron D @see Eq.~A5!# andsc(q,q̂) is either the entropy~for
maximum stability learning! or the free energy~for learning
by minimization of a cost function! of the continuous precur
sor J. In the limit n→0, the leading order term in the expo
nent~A4! is independent of the correlation order paramet
r ab and r̂ ab . Hence,r ab , r̂ ab can not be determined afte
taking the limit n→0. Rather, they are given by the sadd
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point equations before the limitn→0 and follow from the
general form of Eq.~7!, Ref. @12#. In the replica symmetric
ansatz, the saddle point equations forr and r̂ reduce to Eqs.
~A12!, ~A13!. They depend on the correct saddle point v
ues for the order parameters of the two individual perc
trons.

1. Saddle point equation for D

The order parametersQ0 ,Q and Q̂0 ,Q̂ must extremize
the entropysdb

sdb5
Q0Q̂0

2
1

QQ̂

2
1E

2`

1`

DuH a lnFHS k2uAQ

AQ02Q
D G

1 lnF2 cosh~uAQ̂!expS 2
~Q̂01Q̂!

2
D 11G J . ~A5!

The value for the maximal stabilitykdb is determined simul-
taneously by the zero entropy conditionsdb50 @10,13#.

2. Saddle point equation for J

The considered learning rules result in a unique soluti
hence I focus on the limitq→q0. A hypercube restricted
vector J that minimizes a cost functionE(J)5(nV(ln) is
described by a set of four saddle point equations@9#

y5122HS 1

sD , ~A6!

q05s2y12HS 1

sD2A2

p
se21/2s2

, ~A7!

y52
a

Aq0
E

2`

`

Du ~l02uAq0! u, ~A8!

y2s25aE
2`

`

Du ~l02uAq0!2. ~A9!

The order parametersy ands are defined by

y5~ q̂01q̂!~q02q!, s5
Aq̂

q̂01q̂
. ~A10!

For (q02q)→0, q̂0 and q̂ tend to infinity while y and s
remain finite. Comparing Eqs.~A6! and ~14! reveals that 1
2y represents the fraction of binary precursor componens
regulates the shape of the distribution functionp(J). Equa-
tions ~A8!, ~A9! depend on the choice of the potentialV(l)
via the functionl0 defined as

l05Arg min
l

FV~l!1
~l2uAq0!2

2x G . ~A11!

The new variable x5b(q02q) is finite in the limit q→q0
which is driven by the inverse temperatureb→`.

For the vector that maximizes the stabilitykc under hy-
percube constraint, Eqs.~A6!,~A7! remain valid while Eqs.
-
-

,

.

~A8!,~A9! must be modified:l0 is to be replaced bykc and
the u integration is restricted tokc2uAq0>0.

For perceptrons on the hypersphere (q051) the descrip-
tion is much simpler@2,17#. For learning by minimization of
a cost function it suffices to know the value of saddle po
variablex. For maximum stability learningkc is to be deter-
mined.

3. Coupling between J and D

In the limit q→q0 , r̂ becomes infinite whiler̂ 05 r̂ (q0
2q) remains finite. Using the saddle point values for t
order parameters of the individual perceptrons, the order
rametersr,r̂ 0 ~or, respectively,g,ĝ) are determined by

r 5~Q02Q!
r̂ 0

y
22sE DuF ~ ĝu1s21!HS ĝu1s21

A12ĝ2
D

2
A12ĝ2

A2p
expS 2

1

2

~ ĝu1s21!2

12ĝ2 D G
3

2 sinh~uAQ̂!

exp~„Q̂01Q̂!/2…12 cosh~uAQ̂!
, ~A12!

r̂ 05aE E Dg~u,w!
~l02uAq0!

A2p~Q02Q!

3expS 2
1

2

~kdb2wAQ!2

Q02Q DH21S kdb2wAQ

AQ02Q
D .

~A13!

Dg(u,w) denotes a two-dimensional Gaussian with ze
mean and varianceg. Equation~A12! is valid for a hyper-
cube constraint. For a spherical constraint (q051), it is to be
replaced by the simple identityr̂ 05r (Q02Q)21. Equation
~A13! is valid for any vectorJ that minimizes a cost function
E(J)5(nV(ln) where l0 is defined by Eq.~A11!. For a
vectorJ that maximizes the stabilitykc , Eq. ~A13! must be
modified:l0 is to be replaced bykc and theu integration is
restricted tokc2uAq0>0.

APPENDIX B: PARTIAL ENUMERATION WITH A
BRANCH AND BOUND ALGORITHM

In this appendix I give some details on the enumerat
algorithm. For a particular storage problem$jn%, n
51, . . . ,aN, one has to determine the precursorJ, the corre-
sponding clipped vectorDclip as well as the index fieldi @k#
which points to precursor componentsJiÞ61 ranking them
by their absolute distance to a valueJ0

zJ02uJi [k21]uz> zJ02uJi [k] uz. ~B1!

The positions of theNb binary components ofJ are listed in
arbitrary order byi @1#, . . . ,i @Nb#. Partial enumeration start
on a diluted binary vectorD whereNf>Nb components
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Di [k]5Di [k]
clip ; k51, . . . ,Nf ~B2!

are given by the clipped vector and kept fixed. For the
maining subset ofNe components all 3Ne or 2Ne combinato-
rial possibilities must be evaluated with respect to the m
mal stability of the resultingD vector. The search space o
3Ne or 2Ne possibilities can be listed in a treelike structur
From a node of the ordermP(0,Ne21) separate three o
two new branches. They copyk51, . . . ,(Nf1m) vector
components Di [k] but differ with respect to the
(Nf1m11)-th component D5$21,0,1% or D
5$0,sgn(Ji [Nf1m11])%, respectively.

The choiceDi [k]5sgn(ji [k]
n ) for all free componentsk

5Nf11, . . . ,N maximizes the local field

Ln~0!5
1

AN
S (

k51

Nf

Di [k]
clip j i [k]

n 1 (
k5Nf11

N

uj i [k]
n u D ~B3!

of a patternjn. Any other choice results in a correction

Ln~m!5Ln~m21!2
2

AN
uj i [k]

n uQ~2j i [k]
n Di [k] !,

k5Nf1m ~B4!

with Q(0)ª0.5 and m>1. The maximum valuek
5maxD@minn Djn#/AN which is obtainable by the class o
vectors D which coincide up to themth node is hence
bounded

k<min
n

Ln~m! ~B5!
k

-

i-

.

with a decreasing upper bound for increasing node num
m<Ne . A branch can be cut off at nodem when the value of
the upper bound minn Ln(m) drops below a reference valu
kopt. kopt gets initialized by the stability of the clipped vecto
Dclip and updated whenever a more stableD vector is found.

If partial enumeration is ignoring the possibility of a
error in signDi [k]5$0,sgn(Ji [k] )% for k5Nf11, . . . ,N, the
potential sign ofDi [k] is known. This allows me to improve
the upper bound Eqs.~B3!,~B4!. In order to maximize the
local fieldLn(0) of a particular patternjn, it is best to dilute
Di [k] whenever sgn(Ji [k] )Þsgn(j i [k]

n )

Ln~0!5
1

AN
min

n
S (

k51

Nf

Di [k]
clip ji [k]

n

1 (
k5Nf11

N

uji [k]
n uQ~ji [k]

n Ji [k] !D . ~B6!

Any other choice results in the correction

Ln~m!5Ln~m21!2
1

AN
uji [k]

n u~Q~ji [k]
n Ji [k] !d0,D( i [k])

1Q~2ji [k]
n Ji [k] !dsgn{J( i [k])}, D( i [k]) !,

k5Nf1m. ~B7!

The second sum in Eqs.~B3!, ~B6! is an overestimation giv-
ing an easy, robust but moderate bound condition. Howe
it is balanced by the first sum which is exact and known fro
the beginning since the major part of vector component
kept fixedNf.Ne .
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